Penn Cardiology at
Penn Presbyterian Medical Center
Presents
CARDIOLOGY UPDATE 2012
A Patient Management Approach

A CME-CERTIFIED COURSE

Saturday and Sunday
October 13-14, 2012
Revel
Atlantic City, NJ

Course Directors
Terry D. Friedman, MD, FACC
John J. Ross, Jr., RDCS, RVS, RCS
Harvey L. Waxman, MD, FACC
PROGRAM OVERVIEW & TARGET AUDIENCE

This conference is designed for the primary care physician, cardiologist, and nurse practitioner with a special interest in cardiology. It will focus on practical and clinical issues faced on a daily basis by the health care professional. There will be a combination of case presentations and didactic lectures which will be used to provide an academically sound and clinically relevant cardiology review. Additionally, full clinical data will be reviewed. If appropriate, an echocardiogram will be performed so that the attendees will see the cardiac abnormality on a large projection screen. One can expect to see a myriad of important clinical issues, both common as well as unusual. A panel of experts will discuss each particular problem and provide clinical recommendations.

Specialists in their field will provide the lectures. Each presentation will focus on an update of the literature to allow the participating clinician to remain current on the latest information. Emphasis will be placed on question and answer sessions to encourage audience participation.

Guest faculty will join full-time faculty from the Perelman School of Medicine at the University of Pennsylvania.

Course Objectives
Upon completion of this activity, participants should be able to:

- Discuss minimally invasive mitral valve repair surgery
- Review the indications and long-term data regarding implantable cardioverter defibrillators
- Explain appropriate use of transfusion in cardiovascular patients
- Discuss the current guidelines for reduction of embolic events in atrial fibrillation
- Review recommended therapy for patients with atrial fibrillation and heart failure
- Describe current management recommendations for thoracic aortic disease
- Discuss the various approaches to the treatment of abdominal aortic aneurysm
- Review the medical management of various lipid abnormalities
- Describe the current approach to diastolic heart failure
- Discuss the relationship of sleep apnea and cardiovascular disease
- Review the indications for surgery in severe valvular heart disease
- Explain the recommended clinical approach to patients with valvular heart disease
Gravitational Cardiovascular Adaptation in the Giraffe

On first impression, the world’s tallest animal the giraffe (Giraffa Camelopardalis), appears to be lanky and awkward in appearance. But, this twenty-foot tall, two ton magnificent creature can in fact out run a horse for short distances reaching speeds of 35 MPH. With its six foot long neck and unevenly sized front and rear legs, it cannot easily be mistaken for any other animal on earth. Even newborn giraffes are tall at six feet and arrive into the world dropping almost six feet to the ground at birth. Growing at nearly a centimeter a day during the first week, they will quickly double their height within the first year. The giraffe’s unusual musculoskeletal adaptation does however present certain cardiovascular physiologic problems that are so unique in nature that biomedical physiologists have devoted countless hours of study to it. Linearly related to neck mass, the Giraffe’s heart is massive weighing twenty-five pounds. It beats 180 times a minute and generates an incredible 290/180 mmHg blood pressure at rest producing a cardiac output of 16 gallons per minute. The secret of the Giraffe’s cerebral equilibrium lies in the ability of its circulatory system to respond instantly to drastic changes in blood volume and pressure that can be produced as a result of raising or lowering its head to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can defy gravity. Dr. Alan Hargens, chief of the Gravitational Research Branch at NASA’s Ames Research Center, is developing an artificially induced gravitational space suit that can adjust to such a great degree. Even NASA scientists are captivated by the way the Giraffe’s unique circulatory system can def...
Course Directors
Terry D. Friedman, MD
Medical Director, Penn Cardiology, Cherry Hill
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

John J. Ross, Jr., RDCS, RVS, RCS
Director, Out Patient Non Invasive Cardiovascular Network
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Harvey L. Waxman, MD
Chief of Cardiology
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Course Faculty
Michael A. Acker, MD
Chief, Division of Cardiothoracic Surgery
University of Pennsylvania Health System
Hospital of the University of Pennsylvania
Philadelphia, PA

Pavan Atluri, MD
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Gerard P. Aurigemma, MD
Director, Non-Invasive Cardiology
University of Massachusetts Medical School
Worchester, MA

John Bullinga, MD
Director, Electrophysiology Laboratory
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Robert M. Bunting, RDCS
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Jeffrey L. Carson, MD
Chief, Division of General Internal Medicine
UMDNJ-Robert Wood Johnson Medical School
New Brunswick, NJ

Alan Cheng, MD
Director, Arrhythmia Device Service
Johns Hopkins University School of Medicine
Baltimore, MD

W. Clark Hargrove, III, MD
Chief, Cardiothoracic Surgery
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Douglas S. Jacoby, MD
Director, Preventive Care
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Joseph E. Kelly, RDCS, RVS
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Alan S. Moak, MD
Endovascular Interventionalist
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Allan I. Pack, MD
Chief, Division of Sleep Medicine
University of Pennsylvania Health System
Hospital of the University of Pennsylvania
Philadelphia, PA

Wilson Y. Szeto, MD
Surgical Director
Transcatheter Cardio-Aortic Therapies
University of Pennsylvania Health Center
Penn Presbyterian Medical Center
Philadelphia, PA

Richard L. Weiss, MD
Director, Echocardiography
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Ross R. Zimmer, MD
Director, Heart Failure Program
University of Pennsylvania Health System
Penn Presbyterian Medical Center
Philadelphia, PA

Spanning 6.3 million square feet and standing 47 stories tall in Atlantic City, Revel is bringing a true resort option to the Northeast. The beachfront destination is smoke-free and features over 1,800 rooms with sweeping ocean views. Designed to embrace its natural surroundings, Revel curated a collection of daytime and nighttime experiences crafted to bring the outside in and the inside out. Indoor and outdoor pools, gardens, lounges, and 32,000-square-foot spa provide the guest with a relaxing resort, while an outstanding collection of 14 restaurant concepts, live entertainment, nightclubs, an oceanfront dayclub, a casino that feels like a theatre and a collection of boutiques tailor to guests passions.
Saturday, October 13, 2012

7:15 AM Registration and Continental Breakfast

8:00 AM Welcome Remarks
 Terry D. Friedman, MD

8:10 AM Interactive Clinical Case Presentations Including History and Live Echocardiography with Audience Participation
 Terry D. Friedman, MD, Moderator
 Robert M. Bunting, RDCS, RVS, Echocardiographer
 Joseph E. Kelly, RDCS, RVS
 John J. Ross, Jr., RDCS, RVS, RCS, Echocardiographer

Panel Discussion:
 Michael A. Acker, MD, Gerard P. Aurigemma, MD, Harvey L. Waxman, MD

Actual cardiac patients will be presented and histories will be obtained. Furthermore, echo will be completed. Discussion with emphasis on clinical management will be held with an expert panel and open questions from the audience will be encouraged.

9:45 AM Break

10:00 AM Minimally Invasive Mitral Valve Repair: 1,000 and Counting…
 The presentation includes descriptions of techniques and results of this procedure.
 W. Clark Hargrove, III, MD

10:30 AM Implantable Cardioverter Defibrillators: Are They Really Saving Lives?
 The presentation includes discussions of indications for ICD, reviews actual long-term outcomes, and understanding of the latest recalls.
 Alan Cheng, MD

11:00 AM Sleep Apnea and Cardiovascular Disease
 The discussion will include the potential role of sleep apnea in heart failure, hypertension, pulmonary hypertension, and cardiac arrhythmias.
 Alan I. Pack, MD

11:30 AM Hypertriglyceridemia: How to Approach in 2012
 This discussion will include rationale for treatment and recommendations of current medications.
 Douglas S. Jacoby, MD

12:00 PM Lunch

1:00 PM Management of Atrial Fibrillation in 2012: Is There Anything New?
 This section will provide guidelines for risk stratification for thromboembolism with strategies for prevention and discussion of when to consider rate vs. rhythm control.
 Alan Cheng, MD

1:40 PM Transfusion Thresholds in Patients with Cardiovascular Disease:
 How low can you go?
 This section includes discussions of guidelines of transfusion in acute coronary syndrome, heart failure, and bypass patients.
 Jeffrey L. Carson, MD

2:25 PM Current Management of Thoracic Aortic Disease
 Wilson Y. Szeto, MD

2:50 PM Abdominal Aortic Aneurysm: Evaluation and Treatment
 Alan S. Moak, MD

3:15 PM Break

3:30 PM Interactive Clinical Case Presentations Including History and Live Echocardiography
 Terry D. Friedman, MD, Moderator
 Robert M. Bunting, RDCS, RVS, Echocardiographer
 Joseph E. Kelly, RDCS, RVS
 John J. Ross, Jr., RDCS, RVS, RCS, Echocardiographer

Panel Discussion: Pavan Atluri, MD, Gerard P. Aurigemma, MD, Harvey L. Waxman, MD

5:00 PM Adjournment

5:00 PM Cocktail Reception and Meet with Faculty

Sunday, October 14, 2012

7:30 AM Continental Breakfast

8:00 AM Lipid Management Cases
 Douglas S. Jacoby, MD

8:50 AM Atrial Fibrillation and Heart Failure: Approach to Management in 2012
 John R. Bullinga, MD

9:30 AM Diastolic Heart Failure: 2012 Update for the Clinician
 Ross R. Zimmer, MD

9:45 AM Break

10:00 AM Clinical Case Study: Let’s Get to the Heart of the Matter
 Richard L. Weiss, MD

10:20 AM Interactive Clinical Case Presentations Including History and Live Echocardiography with Audience Participation
 Terry D. Friedman, MD, John J. Ross, Jr., RDCS, RVS, RCS
 Harvey L. Waxman, MD

12:15 PM Adjournment
CME Registration Form

CARDIOLOGY UPDATE 2012
A Patient Management Approach

To register online for the course please visit www.penncmeonline.com and click on CME Activities

You May Also Mail or Fax Payment and Registration Information to:
Conference Coordinator, Perelman School of Medicine at the University of Pennsylvania
Office of Continuing Medical Education
333 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021
penncme@mail.med.upenn.edu

Please print or type

Name (First) (Last)

Academic Degree

Medical Specialty

Affiliation (Hospital, Office, or Company)

Address (☐ Affiliation or ☐ Home)

City State Zip

Phone Fax

E-mail

Registration Fees (pre-payment is required to be officially registered)
Includes two continental breakfasts, one luncheon, refreshment breaks, and a course syllabus
(Seating is limited and early registration is recommended)
☐ $285 for Practicing Physicians
☐ $260 for Residents, Fellows and Allied Health Professionals
☐ $260 for UPHS Physicians (with valid ID)
☐ $225 for UPHS House Staff and Allied Health Professionals (with valid ID)

Penn Medical ID # ________________________________

Payment Method
Make check payable to The Trustees of the University of Pennsylvania/CME
☐ Visa ☐ MasterCard ☐ Discover ☐ American Express

Authorization Signature

Cardholder Name

Card # Security Code Exp. Date

Please Note: Walk-in registrants must bring payment to the program.
Seating may be limited for walk-in registrants.
CARDIOLOGY UPDATE 2012
A Patient Management Approach

A CME-CERTIFIED COURSE

Saturday and Sunday
October 13-14, 2012

Revel
500 Boardwalk
Atlantic City, NJ